ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
A. H. Fleitman, A. J. Romano and C. J. Klamut
Nuclear Science and Engineering | Volume 22 | Number 1 | May 1965 | Pages 24-32
Technical Paper | doi.org/10.13182/NSE65-A19759
Articles are hosted by Taylor and Francis Online.
Mercury corrosion of Si-deoxidized, low-carbon steel was studied in 5000-h tests using four natural circulation loops with once-through boilers operating at 593°C and with 111°C of superheat. The relative effects of very small quantities of Ti or Zr additions to the Hg and the effectiveness of steel pretreatment (for 500 h at 590–620°C with a liquid Hg-Zr solution), prior to contact with boiling Hg, were determined. A fourth loop, which had no additives nor loop pretreatment, was run simultaneously. With the exception of the Hg-Zr pretreated loop, maximum depth of corrosion did not exceed 50 µm and occurred near the superheater exit where the temperature was the highest. Boiler and condenser corrosion were less than 30 µm in these latter loops. Corrosion 300–1000 µm deep was found on the downstream side of the superheater of the Hg-Zr pretreated loop, and the severity of the attack was attributed to boiling instabilities, which caused liquid Hg to come into contact with the superheater walls. Adherent iron deposits were found in the boilers and cooler liquid regions of three of the loops, but no discernible iron deposits were found in the loop with Zr added. The total quantity of mass-transferred iron (deposits and particulate) was estimated to be approximately 0.2 gm in the Zr-added loop, 0.5 gm in the Ti-added loop, 1 gm in the loop with no additions and 2 gm in the loop pretreated with Hg-Zr solution.