ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
A. H. Fleitman, A. J. Romano and C. J. Klamut
Nuclear Science and Engineering | Volume 22 | Number 1 | May 1965 | Pages 24-32
Technical Paper | doi.org/10.13182/NSE65-A19759
Articles are hosted by Taylor and Francis Online.
Mercury corrosion of Si-deoxidized, low-carbon steel was studied in 5000-h tests using four natural circulation loops with once-through boilers operating at 593°C and with 111°C of superheat. The relative effects of very small quantities of Ti or Zr additions to the Hg and the effectiveness of steel pretreatment (for 500 h at 590–620°C with a liquid Hg-Zr solution), prior to contact with boiling Hg, were determined. A fourth loop, which had no additives nor loop pretreatment, was run simultaneously. With the exception of the Hg-Zr pretreated loop, maximum depth of corrosion did not exceed 50 µm and occurred near the superheater exit where the temperature was the highest. Boiler and condenser corrosion were less than 30 µm in these latter loops. Corrosion 300–1000 µm deep was found on the downstream side of the superheater of the Hg-Zr pretreated loop, and the severity of the attack was attributed to boiling instabilities, which caused liquid Hg to come into contact with the superheater walls. Adherent iron deposits were found in the boilers and cooler liquid regions of three of the loops, but no discernible iron deposits were found in the loop with Zr added. The total quantity of mass-transferred iron (deposits and particulate) was estimated to be approximately 0.2 gm in the Zr-added loop, 0.5 gm in the Ti-added loop, 1 gm in the loop with no additions and 2 gm in the loop pretreated with Hg-Zr solution.