ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
C. E. L. Bamberger, H. F. McDuffie, C. F. Baes, Jr.
Nuclear Science and Engineering | Volume 22 | Number 1 | May 1965 | Pages 14-19
Technical Paper | doi.org/10.13182/NSE65-A19757
Articles are hosted by Taylor and Francis Online.
A procedure, described previously, for the preparation of high purity beryllium hydroxide has been improved and demonstrated on a kilogram scale, and a systematic study of its chemistry has been carried out. The Be(OH)2·xH2O starting material is dissolved in acetylacetone (HX) as BeX2, scrubbed with aqueous EDTA to remove metallic impurities, stripped with nitric acid, and precipitated with ammonia. The dried Be(OH)2 · 0.3 H2O, a granular, free-flowing powder, was obtained in 85% yield. Detectable metallic impurities totalled <5 parts/106. The variation of BeX+ and BeX2 formation quotients with ionic strength as well as the variation of BeX2 and HX distribution coefficients with both aqueous ionic strength and organic phase composition are summarized. Decontamination efficiencies for some 13 cations were estimated to be very high. Effective purification was demonstrated on a sample of Be(OH)2 starting material which was contaminated with 1000 parts/106 parts BeO of Na+, Mg2+, B(III), Cu2+, Al3+, Fe3+ and Cr3+.