ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Rene Sanchez, William Myers, David Hayes, Robert Kimpland, Peter Jaegers, Richard Paternoster, Stephen Rojas, Richard Anderson, William Stratton
Nuclear Science and Engineering | Volume 129 | Number 2 | June 1998 | Pages 187-194
Technical Paper | doi.org/10.13182/NSE98-A1973
Articles are hosted by Taylor and Francis Online.
The parameters that determine when critical mixtures of 239Pu, SiO2, and water and mixtures of 239Pu, Nevada tuff, and water are capable of sustaining an increasing neutron chain reaction as may be caused by a positive void coefficient at constant temperature are established. A single canister is considered that is loaded with up to 75 kg of 239Pu. A survey of critical spherical mixtures of plutonium, SiO2, tuff, and water at constant temperature is created and these results are examined to determine the mixtures that might be autocatalytic. Regions of criticality instability are identified that have the possibility of autocatalytic power behavior. A positive void coefficient is possible for a very limited range of wet systems.