ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kunio Higashi, Akio Oya, Jun Oishi
Nuclear Science and Engineering | Volume 32 | Number 2 | May 1968 | Pages 159-165
Technical Paper | doi.org/10.13182/NSE68-A19728
Articles are hosted by Taylor and Francis Online.
Usually a number of separating stages have to be connected in series to attain the desired degree of isotope separation by gaseous diffusion. Such a series-connected group of stages is called a cascade. In this paper the differential equation describing the time-dependence of a tapered cascade in which the interstage flow changes stage by stage is derived and solved under some reasonable assumptions. On the basis of these analytical results, the static and dynamic characteristics of a tapered cascade are discussed. For the same total number of stages, the cascade requiring the largest equilibrium time to reach steady-state condition is described. Also shown is that the so-called ideal cascade is not recommended from the standpoint of dynamic characteristics, although its superiority in static characteristics is familiar. It is pointed out that by a slight reduction of the cut θ from that of the ideal cascade θideal the dynamic characteristics are improved to some extent, but the selection of θ greater than θideal results in both static and dynamic characteristics being unfavorable. It is also shown that the equilibrium time of a tapered cascade tends to increase with the total number of stages N in proportion to N2 as in a square cascade. The top stage is not always the last to reach the steady-state condition. A simple method is proposed to predict how the equilibrium time differs in each stage of the cascade.