ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Yoshihiko Kanemori, Yutaka Furuta
Nuclear Science and Engineering | Volume 36 | Number 2 | May 1969 | Pages 238-245
Technical Paper | doi.org/10.13182/NSE69-A19721
Articles are hosted by Taylor and Francis Online.
Dose rates of gamma rays from a 60Co cylindrical source surrounded coaxially by a cylindrical shield were measured in the radial direction in a plane passing through the midpoint of the axis of the source. The 60Co was uniformly distributed in a water-like medium. The shield was composed of water and iron, each in a single layer, and of water and iron in a double layer. The concept of the dose buildup factor for a volume source was introduced and the behavior of gamma rays scattered from the shielded cylindrical source was considered. The variation of the dose buildup factor for the shielded cylindrical source as a function of the distance from the source is less than the variation for the unshielded source. The dose buildup factor for a cylindrical source, with and without shields, shows many features that differ from those generally observed, i.e., an infinite medium surrounding a point source and one obtained from the total gamma-ray dose rates calculated by integration of an attenuation kernel with dose buildup factors for a point isotropic source. The unique behavior of the dose buildup factor for the cylindrical source with a cylindrical shield is shown by supplemental experiments with a 60Co point source to be due to the cylindrical shape of the source and shields.