ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Amir N. Nahavandi
Nuclear Science and Engineering | Volume 36 | Number 2 | May 1969 | Pages 159-188
Technical Paper | doi.org/10.13182/NSE69-A19715
Articles are hosted by Taylor and Francis Online.
A generalized digital computer approach to analyze the loss-of-coolant accident in pressurized water reactors requires a systematic specification of the plant geometric, physical, and topological characteristics and initial conditions. The solution of the problem is hampered by numerical stability and convergence problems which can be remedied by first classifying the problem variables into three categories: 1) numerically-integrated; 2) analytically-integrated; and 3) auxiliary algebraic variables. Second, in view of the occurrence of the acoustic wave phenomenon, the maximum allowable integration time step should be kept much smaller than the subharmonics present in the solution. Another distinctive feature of this study is the treatment of stratified elements, such as the pressurizer or the steam generator secondary. Allowance for mass exchange between the top and bottom control volumes in these elements is made by the introduction of bubble rise and condensate drop velocity concepts. Furthermore, to eliminate unrealistic pressure fluctuations in the ruptured elements at the onset of two-phase blowdown, critical flow models including inertia effects are introduced. To verify the sensitivity of the solution to various two-phase frictional loss correlations, five well-known correlations are reviewed. A comparison of the analytical results against LOFT experimental data demonstrates a good agreement and shows that a more accurate prediction would require the introduction of metastability analysis.