ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
R. Gwin, L. W. Weston, G. de Saussure, R. W. Ingle, J. H. Todd, F. E. Gillespie, R. W. Hockenbury, R. C. Block
Nuclear Science and Engineering | Volume 40 | Number 2 | May 1970 | Pages 306-316
Technical Paper | doi.org/10.13182/NSE70-A19691
Articles are hosted by Taylor and Francis Online.
The neutron absorption and fission cross sections for 239Pu have been measured simultaneously over the neutron energy range from 0.02 eV to 30 keV. An electron linear accelerator was used to produce a source of pulsed neutrons which are collimated to impinge on the 239Pu sample located at the center of a large liquid scintillator. The prompt gamma rays resulting from fission or from neutron capture were detected using the large liquid scintillator. A fission event was measured in one case by using an ionization chamber containing 239Pu. In another case using metal foils of 239Pu, a technique depending upon the difference in the shape of the pulse height distributions for the prompt gamma rays from fission and capture was used to distinguish fission events. The data were normalized at 0.025 and 0.3 eV using data previously reported. A brief description of the experiments is given and a comparison of the present data with previously published data is given.