ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
R. Gwin, L. W. Weston, G. de Saussure, R. W. Ingle, J. H. Todd, F. E. Gillespie, R. W. Hockenbury, R. C. Block
Nuclear Science and Engineering | Volume 40 | Number 2 | May 1970 | Pages 306-316
Technical Paper | doi.org/10.13182/NSE70-A19691
Articles are hosted by Taylor and Francis Online.
The neutron absorption and fission cross sections for 239Pu have been measured simultaneously over the neutron energy range from 0.02 eV to 30 keV. An electron linear accelerator was used to produce a source of pulsed neutrons which are collimated to impinge on the 239Pu sample located at the center of a large liquid scintillator. The prompt gamma rays resulting from fission or from neutron capture were detected using the large liquid scintillator. A fission event was measured in one case by using an ionization chamber containing 239Pu. In another case using metal foils of 239Pu, a technique depending upon the difference in the shape of the pulse height distributions for the prompt gamma rays from fission and capture was used to distinguish fission events. The data were normalized at 0.025 and 0.3 eV using data previously reported. A brief description of the experiments is given and a comparison of the present data with previously published data is given.