ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
William T. Sha, Alan E. Waltar
Nuclear Science and Engineering | Volume 44 | Number 2 | May 1971 | Pages 135-156
Technical Paper | doi.org/10.13182/NSE71-A19663
Articles are hosted by Taylor and Francis Online.
A two-dimensional (R - Z) integral model for characterizing fast reactor excursions from accident inception through core disassembly is presented. For predisassembly calculations, a Eulerian geometric model is used and multichannel heat-transfer computations are performed. Reactivity feedback due to Doppler broadening, coolant density change and voiding, and fuel movement are taken into account. A Lagrangian coordinate system is used in the disassembly phase, wherein the neutronics balance consists of Doppler broadening and material motion. A unique feature of the model is the ability to accommodate a pointwise Energy-Density-Dependent Equation-of-State according to the local sodium inventory that actually exists at the time of disassembly. By providing a consistent basis for establishing the effective reactivity ramp rate, Doppler coefficient, appropriate Equation-of-State, and temperature distribution at the start of core disassembly, much of the arbitrariness normally associated with large accident analyses can be removed. For most accident analyses, this model predicts a significantly lower energy yield during a superprompt critical nuclear excursion than would be computed by using the conventional modified Bethe-Tait analysis.