ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
Atsuyuki Suzuki, Ryohei Kiyose
Nuclear Science and Engineering | Volume 44 | Number 2 | May 1971 | Pages 121-134
Technical Paper | doi.org/10.13182/NSE71-A19662
Articles are hosted by Taylor and Francis Online.
The problem of optimal control rod withdrawal sequence is formulated for a multizone core model of a nuclear reactor. In particular, the maximum average burnup problem for light-water reactors is investigated to find the governing principles in optimal control rod programming. The optimal solution depends only on end-of-life (EOL) states, and in the optimal state, the control poisons are all withdrawn from the entire core and the power distribution will be as uneven as possible within the constraints on the power peaking factor. We define the core composition, including the control poison, which represents the nuclear performance of each zone and it is taken as an independent control vector. The admissible control is defined such that the control vector satisfies the criticality condition and the constraints of power peaking factor. Some complexities of the other constraints to be considered are resolved by determining the reachable region of the burnup of each zone which is chosen as a state vector. The method described in this study is based on a topological mapping theory, and for illustrative purposes, the results in the case of a two-zone model are shown by using the method.