ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Yuriy M. Verzilov, Yujiro Ikeda, Fujio Maekawa, Yukio Oyama, Donald L. Smith
Nuclear Science and Engineering | Volume 129 | Number 1 | May 1998 | Pages 81-87
Technical Note | doi.org/10.13182/NSE98-A1965
Articles are hosted by Taylor and Francis Online.
Samples of water isotopically enriched in 17O, 18O, and 2H along with natural water were bombarded by neutrons from the intense deuterium-tritium source provided by the Fusion Neutron Source facility. After irradiation, the accumulated concentrations of 3H and 14C activities were determined by the liquid scintillation method. Special attention was paid to 14C losses in the gas phase during irradiation and preparation of scintillation counting samples. Cross sections for the 17O(n,)14C, 18O(n,n')14C, 17O(n,t)15N, and 18O(n,t)16N reactions at 14.7 MeV have been measured for the first time. The following values have been obtained for these reactions: 18.0 ± 3.3, 35.4 ± 6.5, 0.82 ± 0.15, and 26.8 ± 4.9 mb, respectively, relative to the 93Nb(n,2n)92mNb standard reaction cross section of 460 mb. A study of the systematics of (n,t) reactions at 14.7 MeV on light nuclei (atomic number Z < 10) has been carried out. The experimental cross-section values are also compared with data in the comprehensive activation libraries.