ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Yuriy M. Verzilov, Yujiro Ikeda, Fujio Maekawa, Yukio Oyama, Donald L. Smith
Nuclear Science and Engineering | Volume 129 | Number 1 | May 1998 | Pages 81-87
Technical Note | doi.org/10.13182/NSE98-A1965
Articles are hosted by Taylor and Francis Online.
Samples of water isotopically enriched in 17O, 18O, and 2H along with natural water were bombarded by neutrons from the intense deuterium-tritium source provided by the Fusion Neutron Source facility. After irradiation, the accumulated concentrations of 3H and 14C activities were determined by the liquid scintillation method. Special attention was paid to 14C losses in the gas phase during irradiation and preparation of scintillation counting samples. Cross sections for the 17O(n,)14C, 18O(n,n')14C, 17O(n,t)15N, and 18O(n,t)16N reactions at 14.7 MeV have been measured for the first time. The following values have been obtained for these reactions: 18.0 ± 3.3, 35.4 ± 6.5, 0.82 ± 0.15, and 26.8 ± 4.9 mb, respectively, relative to the 93Nb(n,2n)92mNb standard reaction cross section of 460 mb. A study of the systematics of (n,t) reactions at 14.7 MeV on light nuclei (atomic number Z < 10) has been carried out. The experimental cross-section values are also compared with data in the comprehensive activation libraries.