ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Bart L. Sjenitzer, J. Eduard Hoogenboom
Nuclear Science and Engineering | Volume 175 | Number 1 | September 2013 | Pages 94-107
Technical Paper | doi.org/10.13182/NSE12-44
Articles are hosted by Taylor and Francis Online.
In nuclear reactor physics, deterministic and hybrid calculation methods dominate the field of transient analysis. This implies that important safety assessments are subject to many approximations, which are needed by these methods. This paper proposes the Dynamic Monte Carlo method (Dynamic MC), which solves the coupled Boltzmann and kinetic equations with exact geometry and continuous energy, using only Monte Carlo techniques.For Dynamic MC a number of new techniques are developed, e.g., precursor tracking, forced decay for precursors, and the branchless method. Also, the particle source of the simulation has to be determined differently from what is current standard Monte Carlo practice, and the simulation scheme is adapted.A few example cases are simulated, demonstrating the effectiveness of Dynamic MC. The sample cases vary from simple homogeneous systems to full fuel assemblies with an asymmetric flux profile during the transient. Since Dynamic MC is implemented in the general-purpose Monte Carlo code Tripoli, it can be applied to any geometry.