ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Industry Update—October 2025
Here is a recap of recent industry happenings:
New international partnership to speed Xe-100 SMR deployment
X-energy, Amazon, Korea Hydro & Nuclear Power, and Doosan Enerbility have formed a strategic partnership to accelerate the deployment of X-energy’s Xe-100 small modular reactors and TRISO fuel in the United States to meet the power demands from data centers and AI. The partners will collaborate in reactor engineering design, supply-chain development, construction planning, investment strategies, long-term operations, and global opportunities for joint AI-nuclear deployment. The companies also plan to jointly mobilize as much as $50 billion in public and private investment to support advanced nuclear energy in the U.S.
Dingkang Zhang, Farzad Rahnema, Abderrafi M. Ougouag
Nuclear Science and Engineering | Volume 175 | Number 1 | September 2013 | Pages 70-80
Technical Paper | doi.org/10.13182/NSE12-61
Articles are hosted by Taylor and Francis Online.
A local incident flux response expansion transport method is developed to generate transport solutions for coupling to diffusion theory codes regardless of their solution method (e.g., fine mesh, nodal, response based, finite element, etc.) for reactor core calculations in both two-dimensional (2-D) and three-dimensional (3-D) cylindrical geometries. In this approach, a Monte Carlo method is first used to precompute the local transport solution (i.e., response function library) for each unique transport coarse node, in which diffusion theory is not valid due to strong transport effects. The response function library is then used to iteratively determine the albedo coefficients on the diffusion-transport interfaces, which are then used as the coupling parameters within the diffusion code. This interface coupling technique allows a seamless integration of the transport and diffusion methods. The new method retains the detailed heterogeneity of the transport nodes and naturally constructs any local solution within them by a simple superposition of local responses to all incoming fluxes from the contiguous coarse nodes. A new technique is also developed for coupling to fine-mesh diffusion methods/codes. The local transport method/module is tested in 2-D and 3-D pebble-bed reactor benchmark problems consisting of an inner reflector, an annular fuel region, and a controlled outer reflector. It is found that the results predicted by the transport module agree very well with the reference fluxes calculated directly by MCNP in both benchmark problems.