ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M. Drosg, P. W. Lisowski
Nuclear Science and Engineering | Volume 175 | Number 1 | September 2013 | Pages 19-27
Technical Paper | doi.org/10.13182/NSE12-7
Articles are hosted by Taylor and Francis Online.
Reliable nonelastic cross-section measurements of fast neutrons with 3He are sparse. In the energy range up to 40 MeV, the data are dominated by unpublished nonelastic n-3He values derived from measurements made in 1982. As mentioned elsewhere, n-3He elastic cross-section data reported in the same report had not been corrected for the outgoing neutron attenuation even though the sample size was >7 mol. To check the database of existing nonelastic n-3He cross-section data, and in particular those from 1982, a detailed balance calculation of time-reversed charged-particle data was performed. Because there are few existing independent data, we provide an updated detailed balance analysis in the energy range up to 31 MeV for both 3He(n,p)3H and 3He(n,d)2H, supplying accurate absolute-angle-dependent differential cross sections. Subtracting the integrals of these and the elastic cross sections from the total provides a prediction for the sum of the 3He(n,2n)2p and 3He(n,n + p)2H cross sections. The relevant experimental data are compared with their time-reversed counterparts.