ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Y. Richet, G. Caplin, J. Crevel, D. Ginsbourger, V. Picheny
Nuclear Science and Engineering | Volume 175 | Number 1 | September 2013 | Pages 1-18
Technical Paper | doi.org/10.13182/NSE11-116
Articles are hosted by Taylor and Francis Online.
Nuclear criticality safety assessment often requires groupwise Monte Carlo simulations of k-effective in order to check subcriticality of the system of interest. A typical task to be performed by safety assessors is hence to find the worst combination of input parameters of the criticality Monte Carlo code (i.e., leading to maximum reactivity) over the whole operating range. Then, checking subcriticality can be done by solving a maximization problem where the input-output map defined by the Monte Carlo code expectation (or an upper quantile) stands for the objective function or “parametric” model. This straightforward view of criticality parametric calculations complies with recent works in Design of Computer Experiments, an active research field in applied statistics. This framework provides a robust support to enhance and consolidate good practices in criticality safety assessment. Indeed, supplementing the standard “expert-driven” assessment by a suitable optimization algorithm may be helpful to increase the reliability of the whole process and the robustness of its conclusions. Such a new safety practice is intended to rely on both well-suited mathematical tools (compliant optimization algorithms) and computing infrastructure (a flexible grid-computing environment).