ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Y. Richet, G. Caplin, J. Crevel, D. Ginsbourger, V. Picheny
Nuclear Science and Engineering | Volume 175 | Number 1 | September 2013 | Pages 1-18
Technical Paper | doi.org/10.13182/NSE11-116
Articles are hosted by Taylor and Francis Online.
Nuclear criticality safety assessment often requires groupwise Monte Carlo simulations of k-effective in order to check subcriticality of the system of interest. A typical task to be performed by safety assessors is hence to find the worst combination of input parameters of the criticality Monte Carlo code (i.e., leading to maximum reactivity) over the whole operating range. Then, checking subcriticality can be done by solving a maximization problem where the input-output map defined by the Monte Carlo code expectation (or an upper quantile) stands for the objective function or “parametric” model. This straightforward view of criticality parametric calculations complies with recent works in Design of Computer Experiments, an active research field in applied statistics. This framework provides a robust support to enhance and consolidate good practices in criticality safety assessment. Indeed, supplementing the standard “expert-driven” assessment by a suitable optimization algorithm may be helpful to increase the reliability of the whole process and the robustness of its conclusions. Such a new safety practice is intended to rely on both well-suited mathematical tools (compliant optimization algorithms) and computing infrastructure (a flexible grid-computing environment).