ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
P. D. Krishnani, K. R. Srinivasan
Nuclear Science and Engineering | Volume 78 | Number 1 | May 1981 | Pages 97-103
Technical Note | doi.org/10.13182/NSE81-A19614
Articles are hosted by Taylor and Francis Online.
A method based on interface current formalism has been developed for solving the integral transport equation for cylindered pressurized heavy water reactor fuel lattices. In this a fuel cluster is divided into various rings, which are further subdivided into homogeneous zones like fuel, cladding, and associated coolant. The region outside the fuel cluster is also divided into a number of concentric annular (homogeneous) regions. A cosine current approximation is assumed at all the interfaces of the rings and annular regions while interactions between zones within a ring are directly calculated by the Pij method. In addition to this, the usual flat flux approximation is assumed for each of the homogeneous zones/regions. Based on this method, we have developed a one-group code, ANPROB, for calculating the flux distribution. The results obtained from the present method for 19- and 28-rod cluster lattices have been compared with the exact collision probability (Pij) method for clusters. It is found that the present method reduces the computational time considerably without sacrificing much of the accuracy.