ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
P. D. Krishnani, K. R. Srinivasan
Nuclear Science and Engineering | Volume 78 | Number 1 | May 1981 | Pages 97-103
Technical Note | doi.org/10.13182/NSE81-A19614
Articles are hosted by Taylor and Francis Online.
A method based on interface current formalism has been developed for solving the integral transport equation for cylindered pressurized heavy water reactor fuel lattices. In this a fuel cluster is divided into various rings, which are further subdivided into homogeneous zones like fuel, cladding, and associated coolant. The region outside the fuel cluster is also divided into a number of concentric annular (homogeneous) regions. A cosine current approximation is assumed at all the interfaces of the rings and annular regions while interactions between zones within a ring are directly calculated by the Pij method. In addition to this, the usual flat flux approximation is assumed for each of the homogeneous zones/regions. Based on this method, we have developed a one-group code, ANPROB, for calculating the flux distribution. The results obtained from the present method for 19- and 28-rod cluster lattices have been compared with the exact collision probability (Pij) method for clusters. It is found that the present method reduces the computational time considerably without sacrificing much of the accuracy.