ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
NRC approves subsequent license renewal for Oconee
All three units at the Duke Energy’s Oconee nuclear power plant in South Carolina are now licensed to operate for an additional 20 years.
Hem Prabha Raghav
Nuclear Science and Engineering | Volume 78 | Number 1 | May 1981 | Pages 91-96
Technical Note | doi.org/10.13182/NSE78-91
Articles are hosted by Taylor and Francis Online.
The expression for the neutron escape probability from an absorbing body has been expressed in terms of two polynomials. The main feature of these polynomials is that only the coefficients depend on the shape of the geometry while the expressions remain same. At the same time, the resulting expressions for the escape probability ensure the correct behavior in the white and black limits. As examples, numerical results are presented for five geometries: a sphere, a slab, an infinite solid cylinder, a two-dimensional square geometry having infinite height, and a three-dimensional cuboid. The results obtained by using these polynomials match very well with the exact results obtained by using the program POLM, which solves numerically the exact expressions for the escape probability for the respective geometries.