ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
O. J. Wallace
Nuclear Science and Engineering | Volume 78 | Number 1 | May 1981 | Pages 78-85
Technical Note | doi.org/10.13182/NSE81-A19609
Articles are hosted by Taylor and Francis Online.
Calculations based on the integration of the point kernel over a finite source region are widely used in obtaining gamma-ray fluxes, dose rates, and heating rates. For most cases of practical interest, this integration must be done numerically. The relative merits of the trapezoidal rule, Gauss quadrature, and the semi-Gauss automatic quadrature algorithm of Patterson are discussed as they apply to the integration of the point kernel. The Patterson algorithm is superior to other quadrature algorithms for this application because it allows results to be calculated to a predetermined relative error, wastes no function evaluations, is accurate, and supplies relative error data along with the answer. It is efficient with respect to both engineering and computer time. The implementation of this algorithm for point-kernel integrations is described in detail.