ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
O. J. Wallace
Nuclear Science and Engineering | Volume 78 | Number 1 | May 1981 | Pages 78-85
Technical Note | doi.org/10.13182/NSE81-A19609
Articles are hosted by Taylor and Francis Online.
Calculations based on the integration of the point kernel over a finite source region are widely used in obtaining gamma-ray fluxes, dose rates, and heating rates. For most cases of practical interest, this integration must be done numerically. The relative merits of the trapezoidal rule, Gauss quadrature, and the semi-Gauss automatic quadrature algorithm of Patterson are discussed as they apply to the integration of the point kernel. The Patterson algorithm is superior to other quadrature algorithms for this application because it allows results to be calculated to a predetermined relative error, wastes no function evaluations, is accurate, and supplies relative error data along with the answer. It is efficient with respect to both engineering and computer time. The implementation of this algorithm for point-kernel integrations is described in detail.