ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
U. Malik, L. S. Kothari, A. Kumar
Nuclear Science and Engineering | Volume 81 | Number 1 | May 1982 | Pages 137-143
Technical Note | doi.org/10.13182/NSE82-A19600
Articles are hosted by Taylor and Francis Online.
Neutron diffusion in graphite containing 1/v and non-1/v absorbers has been studied in the diffusion theory approximation using a multigroup (30-group) approach and the neutron scattering kernel proposed earlier by the authors. It is observed that, in this case as in the case of water investigated earlier, the behavior of neutrons in graphite poisoned with gadolinium is different from that in graphite poisoned with samarium or cadmium. To explain the reason for this difference, a hypothetical model for the energy variation of the absorption cross section has been constructed that closely resembles samarium in one limit and goes over to gadolinium in the other. The effect of varying the concentration of non-1/v absorbers on the flux of sub-Bragg and epicold neutrons has been studied for this model, and some interesting results are obtained.