ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
K. Przybylski, J. Ligou
Nuclear Science and Engineering | Volume 81 | Number 1 | May 1982 | Pages 92-109
Technical Paper | doi.org/10.13182/NSE82-A19597
Articles are hosted by Taylor and Francis Online.
After a short presentation of the Boltzmann-Fokker-Planck (BFP) equation, which was derived in a previous work, two numerical approaches to solve this equation are investigated-the multigroup method and a diamond scheme applied in a consistent way to space and energy variables. Because of the parabolic nature of the Fokker-Planck operator, it is shown that the standard neutron transport codes cannot solve such an equation. With the one-dimensional time-dependent BFP-1 code, many numerical results have been produced. All deal with the transport of charged particles in dense plasmas because such a problem is very severe from a numerical point of view. Other applications can be imagined since the BFP formalism is quite general.