ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
Anil Kumar
Nuclear Science and Engineering | Volume 81 | Number 1 | May 1982 | Pages 66-74
Technical Paper | doi.org/10.13182/NSE82-A19595
Articles are hosted by Taylor and Francis Online.
The neutron collision escape probability from a medium depends on the shape of spatial distribution of the source. The case of a uniform or flat source distribution has been investigated extensively from time to time. In the present work, the case of bare homogeneous reactor assemblies having a centrally peaked neutron source distribution has been analyzed for predicting collision escape probability as a function of assembly size measured in terms of the optical mean chord length . An approximation, known as the modified Wigner rational approximation, is derived and is given by where pE(W) stands for the collision escape probability from a bare homogeneous reactor assembly; ϵ1 and ϵ2 are geometry-dependent parameters. These parameters have been determined for infinite slab, infinite cylinder, sphere, cube, and finite cylinders of height-to-diameter ratio varying from 0.1 to 20. It is shown that it is possible to predict the collision escape probability within approximately ±2% of the exact value for , ranging from 0 to 20 mean-free-paths (mfp). Generally, for a given the collision escape probability value for the centrally peaked source is lower than that for the uniform source. But it is found that for very thin infinite slab assemblies of optical mean chord length 1.5 mfp, the collision escape probability for centrally peaked source distribution is higher than that for uniform source distribution. The reason for this anomaly is discussed.