ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
J. Barhen, D. G. Cacuci, J. J. Wagschal, M. A. Bjerke, C. B. Mullins
Nuclear Science and Engineering | Volume 81 | Number 1 | May 1982 | Pages 23-44
Technical Paper | doi.org/10.13182/NSE82-3
Articles are hosted by Taylor and Francis Online.
An advanced methodology for performing systematic uncertainty analysis of time-dependent nonlinear systems is presented. This methodology includes a capability for reducing uncertainties in system parameters and responses by using Bayesian inference techniques to consistently combine prior knowledge with additional experimental information. The determination of best estimates for the system parameters, for the responses, and for their respective covariances is treated as a time-dependent constrained minimization problem. Three alternative formalisms for solving this problem are developed. The two “off-line” formalisms, with and without “foresight” characteristics, require the generation of a complete sensitivity data base prior to performing the uncertainty analysis. The “online” formalism, in which uncertainty analysis is performed interactively with the system analysis code, is best suited for treatment of large-scale highly nonlinear time-dependent problems. This methodology is applied to the uncertainty analysis of a transient upflow of a high pressure water heat transfer experiment. For comparison, an uncertainty analysis using sensitivities computed by standard response surface techniques is also performed. The results of the analysis indicate the following. 1. Major reduction of the discrepancies in the calculation/experiment ratios is achieved by using the new methodology. 2. Incorporation of in-bundle measurements in the uncertainty analysis significantly reduces system uncertainties. 3. Accuracy of sensitivities generated by response-surface techniques should be carefully assessed prior to using them as a basis for uncertainty analyses of transient reactor safety problems. Conclusions about the future applicability of the uncertainty analysis methodology presented in this work are also discussed.