ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
G. Le Coq, J. Lewi, P. Raymond
Nuclear Science and Engineering | Volume 81 | Number 1 | May 1982 | Pages 1-8
Technical Paper | doi.org/10.13182/NSE82-A19590
Articles are hosted by Taylor and Francis Online.
The use of the one-dimensional two-phase flow six-equation model requires knowledge of mass, momentum, and energy transfers between the phases. These transfers can be expressed from the flow parameters and their derivatives. The first part of this paper is devoted to the formulation of the entropy production at the interface as a function of the velocity, Gibbs potential and temperature of each phase. It is assumed that each transfer can be expressed in the form where R is the reversible part and δR the irreversible part of the transfer R. The linear theory of irreversible thermodynamics allows the formulation of δR. The expression of R may include differential terms. In the second part of this paper, we show how to write interfacial transfer terms to reduce the six-equation model into a lower order model. The last part of this paper presents an original method for computing critical flow, taking into account the flow blockage phenomenon, which is observed when variations of downstream conditions do not produce any significant effect on the upstream flow, even though the fluid velocity is less than the sound velocity.