ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
G. Le Coq, J. Lewi, P. Raymond
Nuclear Science and Engineering | Volume 81 | Number 1 | May 1982 | Pages 1-8
Technical Paper | doi.org/10.13182/NSE82-A19590
Articles are hosted by Taylor and Francis Online.
The use of the one-dimensional two-phase flow six-equation model requires knowledge of mass, momentum, and energy transfers between the phases. These transfers can be expressed from the flow parameters and their derivatives. The first part of this paper is devoted to the formulation of the entropy production at the interface as a function of the velocity, Gibbs potential and temperature of each phase. It is assumed that each transfer can be expressed in the form where R is the reversible part and δR the irreversible part of the transfer R. The linear theory of irreversible thermodynamics allows the formulation of δR. The expression of R may include differential terms. In the second part of this paper, we show how to write interfacial transfer terms to reduce the six-equation model into a lower order model. The last part of this paper presents an original method for computing critical flow, taking into account the flow blockage phenomenon, which is observed when variations of downstream conditions do not produce any significant effect on the upstream flow, even though the fluid velocity is less than the sound velocity.