ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
G. Le Coq, J. Lewi, P. Raymond
Nuclear Science and Engineering | Volume 81 | Number 1 | May 1982 | Pages 1-8
Technical Paper | doi.org/10.13182/NSE82-A19590
Articles are hosted by Taylor and Francis Online.
The use of the one-dimensional two-phase flow six-equation model requires knowledge of mass, momentum, and energy transfers between the phases. These transfers can be expressed from the flow parameters and their derivatives. The first part of this paper is devoted to the formulation of the entropy production at the interface as a function of the velocity, Gibbs potential and temperature of each phase. It is assumed that each transfer can be expressed in the form where R is the reversible part and δR the irreversible part of the transfer R. The linear theory of irreversible thermodynamics allows the formulation of δR. The expression of R may include differential terms. In the second part of this paper, we show how to write interfacial transfer terms to reduce the six-equation model into a lower order model. The last part of this paper presents an original method for computing critical flow, taking into account the flow blockage phenomenon, which is observed when variations of downstream conditions do not produce any significant effect on the upstream flow, even though the fluid velocity is less than the sound velocity.