ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. F. Henry
Nuclear Science and Engineering | Volume 20 | Number 3 | November 1964 | Pages 338-351
Technical Paper | doi.org/10.13182/NSE64-A19579
Articles are hosted by Taylor and Francis Online.
For a large power reactor it appears possible to describe nonseparable space-time kinetics transients in terms of a particular set of spatial harmonics to be called inhour modes. These modes are defined as a subset of the period modes obtained by assuming a separable time variation ewt for all variables in the source-free, time-dependent neutron and neutron-precursor equations. Their use is appropriate whenever details of the neutron energy and angular behavior are not required. Inhour modes are shown to occur in clusters of seven, the seven eigenvalues of a given cluster being obtained as the roots of an inhour equation appropriate to the cluster. The neutron flux shapes associated with a particular cluster of seven modes are all approximately the same. It is shown that if these shapes are assumed to be identical, certain useful orthogonality relations and certain identities involving the roots of the inhour formula for a given cluster are obtained. Use of these results simplifies the extension of the conventional equations of reactor kinetics to the nonseparable case. Inhour modes are also useful in analyzing certain experiments involving subcritical assemblies. As an illustration, application to the source-jerk and pulsed-source experiments is made.