ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
I. E. Knudsen, H. E. Hootman and N. M. Levitz
Nuclear Science and Engineering | Volume 20 | Number 3 | November 1964 | Pages 259-265
Technical Paper | doi.org/10.13182/NSE64-A19567
Articles are hosted by Taylor and Francis Online.
This new, dry process employs fluidization and particle-coating techniques and involves direct conversion of uranium hexafluoride to a solid, (uranyl fluoride), by hydrolysis with steam followed by reduction of the uranyl fluoride to the dioxide by reaction with steam-hydrogen mixtures. Process studies were carried out in 3-in.-diameter Monel reactors. The uranium-hexafluoride/steam reaction was conducted continuously at relatively low temperatures, about 200 C, at a uranium hexafluoride rate equivalent to 174 lb uranium h-1 ft-2 of reactor cross section and a steam rate of about 3.25 times the stoichiometric requirement. Seed addition was required to offset particle-growth effects. Uranium losses to the off-gas were less than 0.01% of the hexafluoride fed. Reduction of the uranyl fluoride to the oxide was demonstrated in batch tests. Low-fluoride (<250 parts/106 residual) material was consistently produced in four hours at 650 C and in seven hours at 600 C using a 50:50 mixture of steam and hydrogen. Pellet-fabrication tests on dioxide powders ground to -325 mesh gave sintered densities of about 94% of theoretical.