ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Heinz Vollmer
Nuclear Science and Engineering | Volume 34 | Number 2 | November 1968 | Pages 148-157
Technical Paper | doi.org/10.13182/NSE68-A19540
Articles are hosted by Taylor and Francis Online.
Local and weighted transient temperatures in a cylindrical, cladded fuel rod and a single-phase compressible coolant are determined by a linear analytical model applying Laplace transformation. All independent variables determining the channel temperatures and the interaction between fuel, canning, and coolant temperatures are taken into account. Assuming constant material properties in the fuel rod, the calculation of fuel and clad temperature is shown to require four functions defined such that one argument is real and depends on geometry only. Material properties affect only the other (imaginary) argument, and different properties result in parallel displacement of the functions. These features enable a relative general presentation of the functions for various geometries and material properties. The functions determining coolant temperature may be given in an integral-free form if, essentially, the can-to-coolant heat transfer coefficient is space independent. The model was originally developed for use in steam cooled fast reactor analysis. It may be applied to other fast or thermal systems with single-phase coolants. Furthermore, it may serve as a means for evaluating numerical approximations of nonanalytical finite difference methods (e.g., to establish the necessary number of subregions).