ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Heinz Vollmer
Nuclear Science and Engineering | Volume 34 | Number 2 | November 1968 | Pages 148-157
Technical Paper | doi.org/10.13182/NSE68-A19540
Articles are hosted by Taylor and Francis Online.
Local and weighted transient temperatures in a cylindrical, cladded fuel rod and a single-phase compressible coolant are determined by a linear analytical model applying Laplace transformation. All independent variables determining the channel temperatures and the interaction between fuel, canning, and coolant temperatures are taken into account. Assuming constant material properties in the fuel rod, the calculation of fuel and clad temperature is shown to require four functions defined such that one argument is real and depends on geometry only. Material properties affect only the other (imaginary) argument, and different properties result in parallel displacement of the functions. These features enable a relative general presentation of the functions for various geometries and material properties. The functions determining coolant temperature may be given in an integral-free form if, essentially, the can-to-coolant heat transfer coefficient is space independent. The model was originally developed for use in steam cooled fast reactor analysis. It may be applied to other fast or thermal systems with single-phase coolants. Furthermore, it may serve as a means for evaluating numerical approximations of nonanalytical finite difference methods (e.g., to establish the necessary number of subregions).