ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. Karlsson, I. Pázsit
Nuclear Science and Engineering | Volume 128 | Number 3 | March 1998 | Pages 225-242
Technical Paper | doi.org/10.13182/NSE98-A1953
Articles are hosted by Taylor and Francis Online.
Separation of various flux oscillation modes in boiling water reactor (BWR) noise measurements, based on flux factorization techniques (i.e., using orthogonality relations via integrals over the whole core), have been attempted in the past but without much success. One such example is the attempt made in 1990 in connection with the measurements in the Swedish Ringhals Unit 1 (Ringhals-1) BWR where both global (fundamental-mode) and regional (first-azimuthal-mode) oscillations were observed.Shown here is the reason for the failure of the earlier separation methods, that is, the presence of the local component of the noise with its known axial correlation properties. This component has been ignored in all BWR instability work so far. Further, because of the approximation of the factorization integral by a finite sum, cross-correlations between all detectors will appear in the autocorrelation of the factorized detector signals.Taking into account the properties of both the noise structure and the approximate factorization, elaboration of a factorization-based flux decomposition is possible. A phenomenological BWR noise model is used here in support of the decomposition technique. The model is also used to explain the success or failure of previous methods. The general factorization method proposed is demonstrated in various examples using the Ringhals-1 measurement data. In particular, the global and regional decay ratios are determined in a consistent way that is more general than the alternative methods used so far.