ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Harry J. Reilly, John D. Hansell, George L. Heath
Nuclear Science and Engineering | Volume 38 | Number 2 | November 1969 | Pages 135-142
Technical Paper | doi.org/10.13182/NSE69-A19518
Articles are hosted by Taylor and Francis Online.
A method of performing probability calculations for nuclear-reactor surface temperatures has been devised. The method gives consideration to the fact that some uncertainties may vary systematically over all the reactor or over some parts of it. The method does not depend on assumption of any particular form of the probability distributions. The method was used to do an example calculation for an MTR-type test reactor with plate-type fuel elements. It was shown that the calculated probability of failure, that is, that surface temperature exceeds coolant saturation temperature, lies closer to values obtained from the Deterministic Method than to values from the Statistical Method. The calculated probability value was identified as the probability of success at the instant of reactor startup. It was observed that the probability of success for continued operation might not be the same as the value for startup. The method gives an improved representation of the probability problem for reactor surface temperatures. However, there is still much to be learned about the various important distribution functions. In the present situation of inadequate knowledge of behavior and distributions of uncertainty factors, all such probability calculations must be regarded as providing only a rough approximation to the true probability of success for a reactor.