ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Harry J. Reilly, John D. Hansell, George L. Heath
Nuclear Science and Engineering | Volume 38 | Number 2 | November 1969 | Pages 135-142
Technical Paper | doi.org/10.13182/NSE69-A19518
Articles are hosted by Taylor and Francis Online.
A method of performing probability calculations for nuclear-reactor surface temperatures has been devised. The method gives consideration to the fact that some uncertainties may vary systematically over all the reactor or over some parts of it. The method does not depend on assumption of any particular form of the probability distributions. The method was used to do an example calculation for an MTR-type test reactor with plate-type fuel elements. It was shown that the calculated probability of failure, that is, that surface temperature exceeds coolant saturation temperature, lies closer to values obtained from the Deterministic Method than to values from the Statistical Method. The calculated probability value was identified as the probability of success at the instant of reactor startup. It was observed that the probability of success for continued operation might not be the same as the value for startup. The method gives an improved representation of the probability problem for reactor surface temperatures. However, there is still much to be learned about the various important distribution functions. In the present situation of inadequate knowledge of behavior and distributions of uncertainty factors, all such probability calculations must be regarded as providing only a rough approximation to the true probability of success for a reactor.