ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Harry McNeill, Martin Becker
Nuclear Science and Engineering | Volume 42 | Number 2 | November 1970 | Pages 220-229
Technical Paper | doi.org/10.13182/NSE70-A19502
Articles are hosted by Taylor and Francis Online.
Acoustic wave propagation in a gaseous core nuclear rocket is investigated by a theoretical model. Slab geometry in a long initially uniform cavity is assumed for simplicity and the reflector-heat sink is taken to be of infinite thickness. Blackness theory is used to determine the transmission of thermal neutrons (and thereby the generation of heat) in the fissionable gas of the cavity. Mutual feedback between neutron dynamics and gas dynamics occurs by means of the density-dependence of the blackness coefficients. Numerical results indicate that neutronic feedback can be a significant influence toward stabilization of acoustic oscillations. The critical wave length (which is twice the critical core length) without neutronic feedback is calculated to be 100 cm while critical wave lengths of 150 and 232 cm were obtained for carbon and beryllium reflectors, respectively. These results show that the critical core lengths are still comparable to or shorter than typical reference core lengths (300 cm). Thus, while neutronic feedback has an effect on acoustic instability, the effect is not strong enough to alter the general conclusion that acoustic instability is a potential problem area for gaseous reactor development.