ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. H. Menzel, R. E. Slovacek, E. R. Gaerttner
Nuclear Science and Engineering | Volume 42 | Number 2 | November 1970 | Pages 119-136
Technical Paper | doi.org/10.13182/NSE70-A19493
Articles are hosted by Taylor and Francis Online.
Time-dependent neutron spectra in the center of an externally pulsed finite (7.16 × 25.02 × 25.4 cm3) H2O medium at 37.8°C were measured over an energy range 0.01 eV < E < 0.25 eV and for times extending from approximately zero to 100 µsec after the pulse. The phased mechanical chopper time-of-flight technique using the Rensselaer LINAC was combined with an on-line computer to obtain these measurements. A unique dual-disk neutron chopper was designed to follow the rapidly changing behavior of neutrons in a pulsed water medium with a chopper burst width of 3.4 µsec (FWHM). The neutron burst of this width was produced by the scissor-type chopping action of two over-lapping boron-10 loaded steel disks which rotated in the same direction at 11 250 rpm. Experimental results are presented in the form of the time behavior of neutrons at various energies (neutron life histories), time moments, neutron spectra at various times, the steady-state spectrum, as well as the energy and velocity moments. The average neutron velocity corresponding to the experimental spectrum at t = 23 µsec is within 2% of the average velocity corresponding to the asymptotic Maxwellian distribution. This indicates that the thermalization process is essentially complete in 23 µsec in the pulsed finite water medium that was studied. Due to spatial harmonics, the apparent exponential rate of decay determined from neutron life history curves for t > 30 µsec is only three-fourths of that corresponding to the fundamental decay constant for the medium under investigation. The results of a harmonic analysis based on cadmium-covered gold foil activations along the three axes of the water slab are in complete agreement with the neutron life histories at the medium center for 40 µsec < t < 100 µsec and with spatially dependent die-away measurements for 150 µsec < t < 900 µsec. Time-dependent diffusion theory calculations using a 78-group Haywood-II hydrogen kernel and a mass-16 free gas oxygen kernel have been performed with and without spatial harmonics. The inclusion of higher spatial modes in these calculations affects the amplitude of the time-dependent spectra by about 20% but changes the spectral shape at the high energy side by an increase of only 2 to 3%; the average energy increases by only about 1% for the time range 5 µsec < t < 60 µsec. The results of the theoretical calculations employing time-dependent diffusion theory indicate that the average velocity is within 2% of the asymptotic value after 16 µsec, less than the measured value. The agreement between experiment and calculation is however considerably better than had been obtained in the only previously published study; in that investigation time-dependent spectra measurements made on a large water medium indicated that the thermalization time was greater than 100 µsec.