ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
A. Boeuf, G. Casini, E. Macke, L. T. Papay, S. Tassan
Nuclear Science and Engineering | Volume 52 | Number 3 | November 1973 | Pages 360-381
Technical Paper | doi.org/10.13182/NSE73-A19483
Articles are hosted by Taylor and Francis Online.
The reactivity worths of synthetic plutonium-uranium clustered fuel elements in a heavy-water-moderated assembly have been experimentally determined using the reactor oscillation method. Several test-fuel compositions have been investigated, representing varying degrees of fucl burnup and burnup distributions; two uranium samples with different U enrichment have been used as standard. The technique selected was aimed to establish “clean” experimental conditions, in order to effectively simplify the analysis of the results. Basically, the technique involved oscillating, according to a square-wave pattern, a 6-m-long fuel element containing a 50-cm-high test section with the fuel composition to be investigated the corresponding neutron density modulation was interpreted in terms of a Fourier analysis. The results of the experiment form a consistent set of data that can be used as test values for refined reactor burnup calculation codes. The overall experimental error, typically ±0.015 pcm (1 pcm = 10-5 Δkeff/keff). is considered remarkably low in view of the massive experimental setup required. A method for the theoretical analysis of the measured reactivity worths is presented. A multigroup perturbation transport calculation in one dimension (S4 approximation) has been developed to account for the radial environmental conditions. The axial effects have been evaluated with a two-dimensional transport calculation. The group cross-section data used in the analysis were basically taken from the GAM-II and GATHER-II libraries. Using the same basic one-dimensional code with an appropriately adjusted input parameter, infinite lattice multiplication factors have also been calculated from he experimental reactivity results. These results are compared to the values of k∞ obtained from null-reactivity measurements of identical clusters which were performed in association with the Comitato Nazionale Energia Nucleare, Italy, in RB-1 Reactor in Bologna. The agreement between the two sets of results is satisfactory.