ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Boeuf, G. Casini, E. Macke, L. T. Papay, S. Tassan
Nuclear Science and Engineering | Volume 52 | Number 3 | November 1973 | Pages 360-381
Technical Paper | doi.org/10.13182/NSE73-A19483
Articles are hosted by Taylor and Francis Online.
The reactivity worths of synthetic plutonium-uranium clustered fuel elements in a heavy-water-moderated assembly have been experimentally determined using the reactor oscillation method. Several test-fuel compositions have been investigated, representing varying degrees of fucl burnup and burnup distributions; two uranium samples with different U enrichment have been used as standard. The technique selected was aimed to establish “clean” experimental conditions, in order to effectively simplify the analysis of the results. Basically, the technique involved oscillating, according to a square-wave pattern, a 6-m-long fuel element containing a 50-cm-high test section with the fuel composition to be investigated the corresponding neutron density modulation was interpreted in terms of a Fourier analysis. The results of the experiment form a consistent set of data that can be used as test values for refined reactor burnup calculation codes. The overall experimental error, typically ±0.015 pcm (1 pcm = 10-5 Δkeff/keff). is considered remarkably low in view of the massive experimental setup required. A method for the theoretical analysis of the measured reactivity worths is presented. A multigroup perturbation transport calculation in one dimension (S4 approximation) has been developed to account for the radial environmental conditions. The axial effects have been evaluated with a two-dimensional transport calculation. The group cross-section data used in the analysis were basically taken from the GAM-II and GATHER-II libraries. Using the same basic one-dimensional code with an appropriately adjusted input parameter, infinite lattice multiplication factors have also been calculated from he experimental reactivity results. These results are compared to the values of k∞ obtained from null-reactivity measurements of identical clusters which were performed in association with the Comitato Nazionale Energia Nucleare, Italy, in RB-1 Reactor in Bologna. The agreement between the two sets of results is satisfactory.