ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
V. V. Verbinski, J. C. Young, J. M. Neill
Nuclear Science and Engineering | Volume 52 | Number 3 | November 1973 | Pages 330-342
Technical Paper | doi.org/10.13182/NSE73-A19480
Articles are hosted by Taylor and Francis Online.
Cylindrical proportional counters were used to measure the scalar neutron flux in the core and reflector of the 235U-fueled fast subcritical reactors, STSF-7 and -9. These data have been compared with time-of-flight angular spectrum measurements in the same reactors, and with transport theory calculations of these assemblies utilizing ENDF/B-III cross sections. The agreement of the two measurement techniques at high energy indicates that the emission time correction procedures used for the time-of-flight studies on subcritical (keff = ≈0.92) assemblies with a 220-m flight path are reliable. At intermediate energies, the two types of measurements and the calculations were in good agreement for the STSF-9 oxide-fueled core, but significantly different for the metal-fueled STSF-7 core in the region of fine structure associated with the pronounced aluminum resonances below 300 keV. The time-of-flight data exhibited some energy mismatch here, and the 4π counter was subjected to more aluminum “shielding” than allowed for in the calculations. The shielding effect was strongest in the metal-fueled STSF-7 core, because of the absence of the oxygen moderator. At low energy, where the Doppler effects of the thermal coefficient of reactivity are concentrated, the calculations underpredict the flux. The time-of-flight data, which are the most reliable here, show the greatest disagreement with theory.