ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
G. J. Kirouac, H. M. Eiland, C. A. Conrad, R. E. Slovacek, K. W. Seemann
Nuclear Science and Engineering | Volume 52 | Number 3 | November 1973 | Pages 310-320
Technical Paper | doi.org/10.13182/NSE73-A19478
Articles are hosted by Taylor and Francis Online.
Resonance parameters for 147Pm and 148mPm have been determined and the resonances 147Pm have been analyzed up to 317 eV. Only one resonance was observed for 148mPm; its location at 0.17 eV is important for thermal reactor calculations Transmission measurements were initially made on four samples of 147Pm2O3 containing 1.6% of the decay product 147Sm. Later measurements, made on a mixed sample of (148mPm + 147Pm)2O3 and on 147Sm, provided resonance parameters for 147Pm and an opportunity for a complete reevaluation of the previous 147Pm results. Corrections for the samarium content could also be made. Both shape and area analyses were performed. The measured total cross section for 147Pm at 0.025 eV was 198 ± 8 b and a capture resonance integral of 2280 ± 200 b was calculated. Using the parameters of the 148mPm resonance at 0.17 eV, a corresponding total thermal-neutron cross section of 10 600 b was ob-tained. Integral measurements with cadmium-covered samples gave a value of (3.6 ± 2.4) × 103 b for the resonance integral of 148mPm, thereby setting an upper limit of 6000 b.