ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
Yoshihiro Yamane, Minoru Shinkawa, Kojiro Nishina
Nuclear Science and Engineering | Volume 72 | Number 2 | November 1979 | Pages 244-255
Technical Paper | doi.org/10.13182/NSE79-A19469
Articles are hosted by Taylor and Francis Online.
For single-core reflected neutronic systems, generalized neutron generation time is derived and given physical interpretations in terms of importance. A system kinetic equation containing the moderator region response function previously introduced is reduced by a slow-variation approximation to the form of a conventional one-point kinetic equation, in which a parameter can be identified as generalized neutron generation time by analogy with a bare system. In such a mathematical expression for the parameter, one can further identify the amount of increase due to reflection over the bare system generation time. This amount is found to be the reflection time multiplied by the number of migrations that neutrons undergo between reflector and core in one generation. The theoretical generation time of the SHE assembly, a thermal-energy, graphite-moderated critical assembly, calculated by such a formulation with cylindrical geometry, agreed well with that from pulsed neutron experiments.