ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
F. T. Avignone III, L. P. Hopkins, Z. D. Greenwood
Nuclear Science and Engineering | Volume 72 | Number 2 | November 1979 | Pages 216-221
Technical Paper | doi.org/10.13182/NSE79-A19465
Articles are hosted by Taylor and Francis Online.
The theoretical beta spectrum of the thermal fission fragments of 235U in secular equilibrium was calculated using recent fission yields, nuclear decay scheme data, and very recent semi-empirical mass formulas to predict beta Q values of nuclides with unknown energy level structure. Better agreement with experiment is achieved when these isotopes are assumed to contain all of the excited states of isotopes with known decay schemes with the same atomic number Z and with neutron numbers N differing by even integers. The beta branching ratios for the unknown isotopes were assumed to be the renormalized collection of branching ratios found in all known isotopes of the families described above. The results obtained with these narrower restrictions are in better general agreement with experiment than those that replace the excited states and branching ratios of the unknown nuclides with those obtained by taking broad averages over known isotopes. There still appears to be some disagreement between theory and experiment, particularly at the high-energy end of the spectrum.