ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
F. T. Avignone III, L. P. Hopkins, Z. D. Greenwood
Nuclear Science and Engineering | Volume 72 | Number 2 | November 1979 | Pages 216-221
Technical Paper | doi.org/10.13182/NSE79-A19465
Articles are hosted by Taylor and Francis Online.
The theoretical beta spectrum of the thermal fission fragments of 235U in secular equilibrium was calculated using recent fission yields, nuclear decay scheme data, and very recent semi-empirical mass formulas to predict beta Q values of nuclides with unknown energy level structure. Better agreement with experiment is achieved when these isotopes are assumed to contain all of the excited states of isotopes with known decay schemes with the same atomic number Z and with neutron numbers N differing by even integers. The beta branching ratios for the unknown isotopes were assumed to be the renormalized collection of branching ratios found in all known isotopes of the families described above. The results obtained with these narrower restrictions are in better general agreement with experiment than those that replace the excited states and branching ratios of the unknown nuclides with those obtained by taking broad averages over known isotopes. There still appears to be some disagreement between theory and experiment, particularly at the high-energy end of the spectrum.