ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
K. O. Ott, N. A. Hanan, P. J. Maudlin, R. C. Borg
Nuclear Science and Engineering | Volume 72 | Number 2 | November 1979 | Pages 152-159
Technical Paper | doi.org/10.13182/NSE79-A19460
Articles are hosted by Taylor and Francis Online.
The time-dependent breeding of fuel in a growing system of breeder reactors can be characterized by the transitory (instantaneous) growth rate, γ(t), which expresses both fuel and reactor properties. The three most important aspects of γ(t) can be expressed by time-independent integral concepts. Two of these concepts are in widespread use, although they are not generally calculated from the same definitions. A third integral concept that links the two earlier ones is introduced here. The time-dependent growth rate has an asymptotic value, γ∞, the equilibrium growth rate, which is the basis for the calculation of the doubling time. The equilibrium growth rate measures the breeding capability and represents a reactor property. Maximum deviation of γ(t) and γ∞ generally appears at the initial startup of the reactor, where γ(t = 0) = γ0. This deviation is due to the difference between the initial and asymptotic fuel inventory composition. The initial growth rate can be considered a second integral concept; it characterizes the breeding of a particular fuel in a given reactor. Growth rates are logarithmic derivatives of the growing mass of fuel in breeder reactors, especially γ∞, which describes the asymptotic growth by exp(γ∞t). There is, however, a variation in the fuel-mass factor in front of this exponential function during the transition from γ0 to γ∞. It is shown here that this variation of the fuel mass during transition can be described by a third integral concept, termed the breeding bonus, b. The breeding bonus measures the quality of a fuel for its use in a given reactor in terms of its impact on the magnitude of the asymptotically growing fuel mass. It is therefore an integral concept that comprises both fuel and reactor properties. Integral breeding concepts are generally calculated by application of a set of weight factors to the respective isotopic reaction rate and inventory components. So, the calculation of γ0 and γ∞ is facilitated by use of the critical mass (CM) worths () and the breeding worth factors (), respectively. It is shown here that the calculation of the breeding bonus, as a quantity that links initial and asymptotic fuel growth, is based on the joint application of and .