ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. J. Maudlin, K. O. Ott, R. C. Borg
Nuclear Science and Engineering | Volume 72 | Number 2 | November 1979 | Pages 140-151
Technical Paper | doi.org/10.13182/NSE79-A19459
Articles are hosted by Taylor and Francis Online.
Breeding estimates for long-term reactor fuel logistics are pursued, specifically deriving an instantaneous or transitory fuel growth rate definition, γ(t), from the basic space- and time-dependent fuel cycle equations. The derivation is valid for either the discontinuous or continuous fuel cycle treatments. The resulting definition is applied to a uranium-plutonium fast reactor operating in the closed fuel cycle mode. Transitory growth rate results are calculated for various fuel isotopic weight-factor sets and initial fuel compositions. These results show γ(t) to be practically independent of the isotopic weight-factor sets, provided the γ(t) is calculated from the time-dependent variation of the fuel isotopes. The growth rate derivation automatically yields the fuel composition shift in the form of the reactor fuel time derivative. Investigations of the impact of this quantity on transitory breeding descriptions show that it is the erroneous neglect of the fuel composition-shift term that induces the previously observed strong dependence of the growth rate upon the fuel isotopic weight-factor sets. Accurate approximation of the instantaneous fuel growth rate using transitory static reaction rate information (fuel-shift term neglected) is shown possible with the substitutional critical mass (CM) worth weights, .