ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
P. J. Maudlin, K. O. Ott, R. C. Borg
Nuclear Science and Engineering | Volume 72 | Number 2 | November 1979 | Pages 140-151
Technical Paper | doi.org/10.13182/NSE79-A19459
Articles are hosted by Taylor and Francis Online.
Breeding estimates for long-term reactor fuel logistics are pursued, specifically deriving an instantaneous or transitory fuel growth rate definition, γ(t), from the basic space- and time-dependent fuel cycle equations. The derivation is valid for either the discontinuous or continuous fuel cycle treatments. The resulting definition is applied to a uranium-plutonium fast reactor operating in the closed fuel cycle mode. Transitory growth rate results are calculated for various fuel isotopic weight-factor sets and initial fuel compositions. These results show γ(t) to be practically independent of the isotopic weight-factor sets, provided the γ(t) is calculated from the time-dependent variation of the fuel isotopes. The growth rate derivation automatically yields the fuel composition shift in the form of the reactor fuel time derivative. Investigations of the impact of this quantity on transitory breeding descriptions show that it is the erroneous neglect of the fuel composition-shift term that induces the previously observed strong dependence of the growth rate upon the fuel isotopic weight-factor sets. Accurate approximation of the instantaneous fuel growth rate using transitory static reaction rate information (fuel-shift term neglected) is shown possible with the substitutional critical mass (CM) worth weights, .