ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
S. J. Hakim
Nuclear Science and Engineering | Volume 72 | Number 2 | November 1979 | Pages 129-139
Technical Paper | doi.org/10.13182/NSE79-A19458
Articles are hosted by Taylor and Francis Online.
Simultaneous crust growth in a fluid and the melting of an adjacent colder structure surface in contact with it are examined with emphasis on fast breeder reactor safety applications. The calculations were made subject to the following assumptions: 1. As long as a crust exists, melted structure adjacent to it stays in place until it melts. 2. When a crust melts, melted structure is ablated. The ablation process does not influence the temperature profile in the remaining intact structure. The dependence of the Fourier number at which complete structure melting occurs on fluid-to-crust heat flux is obtained for uranium oxide and thorium oxide crusts forming on steel surfaces. The crust behavior is also investigated as the heat flux is varied. The dependence of the results on internal heat generation and the Biot number on the other side of the structure is determined.