ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yoshihiro Yamane, Kazuma Tanaka, Kojiro Nishina, Hajime Tamagawa, Seiji Shiroya
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 232-245
Technical Paper | doi.org/10.13182/NSE80-A19453
Articles are hosted by Taylor and Francis Online.
A method is proposed to derive three kinetic parameters of a zero-power coupled-core system, namely coupling reactivity Δ, mean neutron transit time , and neutron generation time Λ of respective cores, from the measured frequency responses. In the experimental determination of the parameters, the analytical expression of coupling kernel and its frequency dependence, which are derived from the moderator region response function, are taken advantage of. For experimental determination of the parameters as well as frequency response, experiments were carried out with a pile oscillator installed in the Kyoto University Critical Assembly, a light-water-moderated and -reflected critical assembly. The variation of kinetic parameters with the core distance, in particular, was observed with special attention. The validity of the proposed method is demonstrated by close agreement in the first two of the above three parameters between the theory and the experiment.