ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
K. Wisshak, F. Käppeler
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 148-162
Technical Paper | doi.org/10.13182/NSE80-A19447
Articles are hosted by Taylor and Francis Online.
The neutron capture and subthreshold fission cross section of 241Am was measured in the energy range from 10 to 250 keV, using 197Au and 235U as the respective standards. Neutrons were produced via the 7Li(p,n) and the T(p,n) reaction with the Karlsruhe 3-MV pulsed Van de Graaff accelerator. Capture events were detected by a Moxon-Rae detector and fission events by a NE-213 liquid scintillator with pulse-shape discriminator equipment. Flight paths as short as 50 to 66 mm were used to obtain optimum signal-to-background ratio. The capture cross section could be determined with a total statistical and systematic uncertainty of 4 to 10% while the respective values are 13 to 20% for the fission cross section. The results are compared with recent data of other authors, which in some cases are severely discrepant.