ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
E. D. Arthur
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 137-147
Technical Paper | doi.org/10.13182/NSE80-A19446
Articles are hosted by Taylor and Francis Online.
The mass region around A = 90 was chosen for examination of the validity of nuclear models and input-parameter determination techniques often used to meet nuclear data requirements where no experimental data exist. Consistent sets of input parameters, determined through analysis of independent data available in this mass region, were applied to the calculation of all major neutron reactions on 89Y and 90Zr occurring between 0.05 and 20 MeV. These parameters were then tested under even more stringent conditions through calculation and comparison to experimental data on unstable target nuclei available for neutron energies of 14 to 15 MeV. These calculations, both on stable and unstable nuclei, serve to indicate that reliable cross-section predictions can be obtained from nuclear models that use carefully determined parameters verified in concurrent comparisons to available experimental data.