ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
E. D. Arthur
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 137-147
Technical Paper | doi.org/10.13182/NSE80-A19446
Articles are hosted by Taylor and Francis Online.
The mass region around A = 90 was chosen for examination of the validity of nuclear models and input-parameter determination techniques often used to meet nuclear data requirements where no experimental data exist. Consistent sets of input parameters, determined through analysis of independent data available in this mass region, were applied to the calculation of all major neutron reactions on 89Y and 90Zr occurring between 0.05 and 20 MeV. These parameters were then tested under even more stringent conditions through calculation and comparison to experimental data on unstable target nuclei available for neutron energies of 14 to 15 MeV. These calculations, both on stable and unstable nuclei, serve to indicate that reliable cross-section predictions can be obtained from nuclear models that use carefully determined parameters verified in concurrent comparisons to available experimental data.