ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
Michiko Hamasaki, Shi-Chien Lin, Yii-Der Chuang
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 103-118
Technical Paper | doi.org/10.13182/NSE80-A19444
Articles are hosted by Taylor and Francis Online.
Since it is desirable for power reactors to operate at steady power at a temperature of ∼300°C, the main purpose of this study is to relate the dispersion and spheroidization of zirconium hydrides to operating procedures. Accordingly, we stress the hydride attack and supersaturation of hydrogen solubilities in the pre- and post-irradiated Zircaloys. Through this study we could find a way to improve the dispersed spheroidization process. The hydrogen diffusion coefficient of post-irradiated Zircaloy-4 with a neutron fluence of 1.64 × 1019 n/cm2 is 5 to 50% higher than that of the pre-irradiated Zircaloy-4. We considered there is a workable way to spheroidize hydrides with a temperature lower than the eutectoid temperature for irradiated Zircaloy, 547°C. Therefore, we propose to adapt the peritectoid reaction temperature, 255°C, to spheroidize zirconium hydrides. In the next section, we have studied the creep and corrosion behavior of annealed, hydrided, and spheroidized pre-irradiated Zircaloy-4 specimens following the proposed process. An annealed Zircaloy-4 specimen has the lowest minimum creep rate and the highest ductility and loading strain. A hydrided Zircaloy-4 specimen has the smallest loading strain and the lowest ductility. The spheroidized Zircaloy-4 specimen following the proposed process has a higher minimum creep rate than that of a hydrided one; however, the ductility of the specimen with sperhoidized hydrides is recovered to ∼90% of the annealed one at 500°C The spheroidization treatment can improve the corrosion resistance of the hydrided specimen effectively in the temperature range of 200 to 400°C with the hydrogen concentration of the specimen up to 1000 ppm, although at 500°C the effect of spheroidization treatment on the hydride is decreased. We conclude that the proposed process with pre-irradiated Zircaloy and partially complete spheroidization can still improve the mechanical properties and corrosion behavior of the Zircaloy.