ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Michiko Hamasaki, Shi-Chien Lin, Yii-Der Chuang
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 103-118
Technical Paper | doi.org/10.13182/NSE80-A19444
Articles are hosted by Taylor and Francis Online.
Since it is desirable for power reactors to operate at steady power at a temperature of ∼300°C, the main purpose of this study is to relate the dispersion and spheroidization of zirconium hydrides to operating procedures. Accordingly, we stress the hydride attack and supersaturation of hydrogen solubilities in the pre- and post-irradiated Zircaloys. Through this study we could find a way to improve the dispersed spheroidization process. The hydrogen diffusion coefficient of post-irradiated Zircaloy-4 with a neutron fluence of 1.64 × 1019 n/cm2 is 5 to 50% higher than that of the pre-irradiated Zircaloy-4. We considered there is a workable way to spheroidize hydrides with a temperature lower than the eutectoid temperature for irradiated Zircaloy, 547°C. Therefore, we propose to adapt the peritectoid reaction temperature, 255°C, to spheroidize zirconium hydrides. In the next section, we have studied the creep and corrosion behavior of annealed, hydrided, and spheroidized pre-irradiated Zircaloy-4 specimens following the proposed process. An annealed Zircaloy-4 specimen has the lowest minimum creep rate and the highest ductility and loading strain. A hydrided Zircaloy-4 specimen has the smallest loading strain and the lowest ductility. The spheroidized Zircaloy-4 specimen following the proposed process has a higher minimum creep rate than that of a hydrided one; however, the ductility of the specimen with sperhoidized hydrides is recovered to ∼90% of the annealed one at 500°C The spheroidization treatment can improve the corrosion resistance of the hydrided specimen effectively in the temperature range of 200 to 400°C with the hydrogen concentration of the specimen up to 1000 ppm, although at 500°C the effect of spheroidization treatment on the hydride is decreased. We conclude that the proposed process with pre-irradiated Zircaloy and partially complete spheroidization can still improve the mechanical properties and corrosion behavior of the Zircaloy.