ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
C. Tsabaris, E. Wattecamps, G. Rollin, C. Papadopoulos
Nuclear Science and Engineering | Volume 128 | Number 1 | January 1998 | Pages 47-60
Technical Paper | doi.org/10.13182/NSE128-47
Articles are hosted by Taylor and Francis Online.
Double-differential (n,xp) and (n,x) cross-section ratio measurements are performed at the 7-MV Van de Graaff accelerator laboratory for neutron energies between 2.0 and 15.6 MeV. The following reaction rate ratios are measured: 58Ni(n,x) to 27Al(n,), 58Ni(n,x) to 58Ni(n,p), 63Cu(n,xp) to 27Al(n,), and 63Cu(n,xp) to 58Ni(n,p). Protons or alphas are detected by E-E-E telescopes under 14, 51, 79, 109, and 141 deg. The energy spectrum of the emitted particles and the angular yield distribution are measured. First, the measurements provide double-differential cross-section data for 27Al(n,) and 58Ni(n,p) by normalization to the known total yield reference cross-section values. Subsequently, the reaction rate ratios of 58Ni(n,x) and 63Cu(n,xp) to 27Al(n,) or 58Ni(n,p) provide double-differential cross sections of 58Ni(n,x) and 63Cu(n,xp) in b/(MeVsr). The measured double-differential cross-section data, the particle energy spectra, the angular distributions, and the total yield cross-section data are compared with measured data from literature and with nuclear reaction model calculations performed at the Institute for Reference Materials and Measurements with the computer codes STAPRE-H and EXIFON.