ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Uncheol Shin, Warren F. Miller, Jr.
Nuclear Science and Engineering | Volume 128 | Number 1 | January 1998 | Pages 27-46
Technical Paper | doi.org/10.13182/NSE98-A1943
Articles are hosted by Taylor and Francis Online.
Using an asymptotic expansion, we found that the modified time-dependent simplified P2 (SP2) equations are robust, high-order, asymptotic approximations to the time-dependent transport equation in a physical regime in which the conventional time-dependent diffusion equation is the leading-order approximation. Using diffusion limit analysis, we also asymptotically compared three competitive time-dependent equations (the telegrapher's equation, the time-dependent SP2 equations, and the time-dependent simplified even-parity equation). As a result, we found that the time-dependent SP2 equations contain higher-order asymptotic approximations to the time-dependent transport equation than the other competitive equations. The numerical results confirm that, in the vast majority of cases, the time-dependent SP2 solutions are significantly more accurate than the time-dependent diffusion and the telegrapher's solutions. We have also shown that the time-dependent SP2 equations have excellent characteristics such as rotational invariance (which means no ray effect), good diffusion limit behavior, guaranteed positivity in diffusive regimes, and significant accuracy, even in deep-penetration problems. Through computer-running-time tests, we have shown that the time-dependent SP2 equations can be solved with significantly less computational effort than the conventionally used, time-dependent SN equations (for N > 2) and almost as fast as the time-dependent diffusion equation. From all these results, we conclude that the time-dependent SP2 equations should be considered as an important competitor for an improved approximate transport equation solver. Such computationally efficient time-dependent transport models are especially important for problems requiring enhanced computational efficiency, such as neutronics/fluid-dynamics coupled problems that arise in the analyses of hypothetical nuclear reactor accidents.