ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Dan G. Cacuci
Nuclear Science and Engineering | Volume 128 | Number 1 | January 1998 | Pages 1-16
Technical Paper | doi.org/10.13182/NSE98-A1941
Articles are hosted by Taylor and Francis Online.
A novel analysis of the neutron multigroup diffusion equation is presented for two-dimensional piecewise homogeneous domains with interior corners that arise at the intersections between regions with distinct material properties. Using polar coordinates centered at a typical interior corner, the solution of the multigroup flux is obtained as an infinite series of products of pairs of functions such that, for every pair, one of the functions depends solely on the angular variable and a single energy group while the other function depends on the radial variable and on all energy groups. The angular functions are shown to be the eigenfunctions of a Sturm-Liouville system that admits an infinite set of discrete and, in general, noninteger eigenvalues. On the other hand, the radial functions are the solutions of an infinite system of second-order ordinary linear differential equations. Exact explicit solutions for the multigroup diffusion equation (MGDE) for two-dimensional disk-like homogeneous domains are also derived and shown to yield analytic expressions for the group fluxes. This analyticity is shown to stem from the fact that the relevant eigenvalues are positive integers, independent of material properties and/or group structure. The exact expressions for the angular eigenvalues and corresponding eigenfunctions for two-region domains are then derived and shown to depend crucially on the specific angle between the two regions. This fact is underscored by deriving the exact expressions for the complete sets of eigenvalues and eigenfunctions for two geometries of particular importance to nuclear reactors, namely the hexagonal and rectangular geometries, respectively, and by showing that they are fundamentally distinct from one another. Of course, these expressions reduce to one and the same form for both geometries when the respective two-region domains are reduced to a single-region domain. Finally, the multigroup fluxes are shown to be bounded but nonanalytic at the respective interior corners; the reason underlying this behavior is traced back to the noninteger character of the relevant eigenvalues. This nonanalyticity is shown to be the fundamental reason for the failure of conventional (e.g., finite difference, finite element) numerical methods for solving the MGDE at and around such corners.