ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
Yoshiaki Oka, Shigehiro An, Hiroyuki Hashikura, Shun-ichi Miyasaka, Kinji Koyama
Nuclear Science and Engineering | Volume 79 | Number 3 | November 1981 | Pages 308-315
Technical Note | doi.org/10.13182/NSE81-A19407
Articles are hosted by Taylor and Francis Online.
Neutron reaction rates were measured by activation foils and thermoluminescent detectors through 180-cm-thick sodium shields and also through the layers of a 6-cm-thick iron plate and the sodium shields. A tightly coupled source shield configuration was constructed with the fast neutron reactor YAYOI as a source. Analysis of the experiments was made by using the DOT 3.5 code with 13-group neutron cross sections from the ENDF/B-IV library. Bondarenko-type self-shielding factors were included. The source condition for the analysis was determined by an iteration method from the experimental result at the reactor-shield interface and the initial estimate that was obtained from the core criticality calculation. The calculated neutron distributions in the shields agree with the experiments within ∼25% for the penetration through 180-cm-thick sodium. The shapes of the spatial distributions of the reaction rates in the shields show rather good agreement with the experiment.