ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Yoshiaki Oka, Shigehiro An, Hiroyuki Hashikura, Shun-ichi Miyasaka, Kinji Koyama
Nuclear Science and Engineering | Volume 79 | Number 3 | November 1981 | Pages 308-315
Technical Note | doi.org/10.13182/NSE81-A19407
Articles are hosted by Taylor and Francis Online.
Neutron reaction rates were measured by activation foils and thermoluminescent detectors through 180-cm-thick sodium shields and also through the layers of a 6-cm-thick iron plate and the sodium shields. A tightly coupled source shield configuration was constructed with the fast neutron reactor YAYOI as a source. Analysis of the experiments was made by using the DOT 3.5 code with 13-group neutron cross sections from the ENDF/B-IV library. Bondarenko-type self-shielding factors were included. The source condition for the analysis was determined by an iteration method from the experimental result at the reactor-shield interface and the initial estimate that was obtained from the core criticality calculation. The calculated neutron distributions in the shields agree with the experiments within ∼25% for the penetration through 180-cm-thick sodium. The shapes of the spatial distributions of the reaction rates in the shields show rather good agreement with the experiment.