ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
K. Ueki
Nuclear Science and Engineering | Volume 79 | Number 3 | November 1981 | Pages 253-264
Technical Paper | doi.org/10.13182/NSE81-A19402
Articles are hosted by Taylor and Francis Online.
Two three-dimensional neutron streaming problems are analyzed by using the Monte Carlo coupling technique. One is streaming through a two-legged cylindrical-annular duct and the other is streaming through a slit. The main advantage of breaking the problem into two Monte Carlo calculations is that it is then not necessary to repeat the calculation of neutron transport from the reactor to the pseudo-detector when the duct or the slit configuration is changed. The coupling technique provides a remarkable improvement in both the calculated results and the fractional standard deviations as compared with usual Monte Carlo calculations. The agreement between the measured reaction rates and the calculated values is quite satisfactory. The calculated values using the coupling technique agree with the measured values within a factor of 2 for In(n,n′) and Ni(n,p) threshold detectors in the two-legged cylindrical-annular-duct problem, and agree within a factor of 3 with results from cadmium-covered gold activation detectors and from In(n,n′), Ni(n,p), and S(n,p) threshold detectors in the slit problem. However, there is a relatively large discrepancy between the calculated and the measured values from the cadmium-covered gold activation detector in the cylindrical-annular-duct problem.