ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Taek Kyum Kim, Chang Hyo Kim
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 346-357
Technical Paper | doi.org/10.13182/NSE97-A1940
Articles are hosted by Taylor and Francis Online.
A new optimization method is presented for determining the optimized pressurized water reactor (PWR) fuel-loading pattern in the maximization principle of the end-of-cycle (EOC) core reactivity. The new method utilizes the point reactivity model in deriving the objective function corresponding to the EOC core reactivity as a linear function of the fuel-loading binary variables. It also uses a mixed integer programming algorithm consisting of the branch and bound method and dual linear programming algorithm in order to maximize the EOC core reactivity. The utility of the new optimization method is discussed in terms of numerical examples for the fuel-loading-pattern optimization of the cycle 4 core of the Yonggwang unit 2 PWR plant.