ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Iván Lux
Nuclear Science and Engineering | Volume 82 | Number 3 | December 1982 | Pages 332-337
Technical Paper | doi.org/10.13182/NSE82-A19394
Articles are hosted by Taylor and Francis Online.
The discrete angle technique is a customary method for selecting scattering angles from such scattering laws that are given through their Legendre coefficients up to some finite order. In this technique, discrete scattering angles are selected with certain probabilities. In low-order Pn truncations, however, this method can lead to unwanted ray effects during the first few free flights of the random walk. We propose a method in which a linear combination of some arbitrary density function, having the same first 2n moments as the truncated expansion, and of a discrete density function will yield samples that conserve the first (2n + 2) moments of the truncated series. Bounds are derived on the possible ranges of the combination coefficient. The method is applied to construct a semicontinuous density function (continuous + Dirac delta functions) having the first four moments prescribed, i.e., being given by its first three Legendre coefficients.