ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Iván Lux
Nuclear Science and Engineering | Volume 82 | Number 3 | December 1982 | Pages 332-337
Technical Paper | doi.org/10.13182/NSE82-A19394
Articles are hosted by Taylor and Francis Online.
The discrete angle technique is a customary method for selecting scattering angles from such scattering laws that are given through their Legendre coefficients up to some finite order. In this technique, discrete scattering angles are selected with certain probabilities. In low-order Pn truncations, however, this method can lead to unwanted ray effects during the first few free flights of the random walk. We propose a method in which a linear combination of some arbitrary density function, having the same first 2n moments as the truncated expansion, and of a discrete density function will yield samples that conserve the first (2n + 2) moments of the truncated series. Bounds are derived on the possible ranges of the combination coefficient. The method is applied to construct a semicontinuous density function (continuous + Dirac delta functions) having the first four moments prescribed, i.e., being given by its first three Legendre coefficients.