ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Iván Lux
Nuclear Science and Engineering | Volume 82 | Number 3 | December 1982 | Pages 332-337
Technical Paper | doi.org/10.13182/NSE82-A19394
Articles are hosted by Taylor and Francis Online.
The discrete angle technique is a customary method for selecting scattering angles from such scattering laws that are given through their Legendre coefficients up to some finite order. In this technique, discrete scattering angles are selected with certain probabilities. In low-order Pn truncations, however, this method can lead to unwanted ray effects during the first few free flights of the random walk. We propose a method in which a linear combination of some arbitrary density function, having the same first 2n moments as the truncated expansion, and of a discrete density function will yield samples that conserve the first (2n + 2) moments of the truncated series. Bounds are derived on the possible ranges of the combination coefficient. The method is applied to construct a semicontinuous density function (continuous + Dirac delta functions) having the first four moments prescribed, i.e., being given by its first three Legendre coefficients.