ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Geun-Sun Auh
Nuclear Science and Engineering | Volume 118 | Number 3 | November 1994 | Pages 186-193
Technical Paper | doi.org/10.13182/NSE94-A19384
Articles are hosted by Taylor and Francis Online.
Among the three digital dynamic compensation methods that are developed for or applied to the rhodium self-powered neutron detector—the dominant pole Tustin method of the core operating limit supervisory system, the direct inversion method, and the Kalman filter method—the best method is selected. The direct inversion method is slightly improved from the previous version, and the Kalman filter method is proposed. The simulation results show that the direct inversion method is better than the dominant pole Tustin method, but the best compensation results can be obtained from the Kalman filter method. The direct inversion method gives better results than the dominant pole Tustin method because it does not contain the assumption of a single pole and zero. The Kalman filter method is the best among the three methods because it uses the information of previous time steps throughout its estimation process.