ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
D. E. Kornreich, B. D. Ganapol
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 317-337
Technical Paper | doi.org/10.13182/NSE97-A1938
Articles are hosted by Taylor and Francis Online.
The linear Boltzmann equation for the transport of neutral particles is investigated with the objective of generating a benchmark-quality calculation for the three-dimensional searchlight problem in a semi-infinite medium. The derivation assumes stationarity, one energy group, and isotropic scattering. The scalar flux (both surface and interior) and the current at the surface are the quantities of interest. The source considered is a pencil-beam incident at a point on the surface of a semi-infinite medium. The scalar flux will have two-dimensional variation only if the beam is normal; otherwise, it is three-dimensional. The solutions are obtained by using Fourier and Laplace transform methods. The transformed transport equation is formulated so that it can be related to a one-dimensional pseudo problem, thus providing some analytical leverage for the inversions. The numerical inversions use standard numerical techniques such as Gauss-Legendre quadrature, summation of infinite series, H-function iteration and evaluation, and Euler-Knopp acceleration. The numerical evaluations of the scalar flux and current at the surface are relatively simple, and the interior scalar flux is relatively difficult to calculate because of the embedded two-dimensional Fourier transform inversion, Laplace transform inversion, and H-function evaluation. Comparisons of these numerical solutions to results from the MCNP probabilistic code and the THREEDANT discrete ordinates code are provided and help confirm proper operation of the analytical code.